翻訳と辞書 |
Alexiewicz norm : ウィキペディア英語版 | Alexiewicz norm In mathematics — specifically, in integration theory — the Alexiewicz norm is an integral norm associated to the Henstock–Kurzweil integral. The Alexiewicz norm turns the space of Henstock–Kurzweil integrable functions into a topological vector space that is barrelled but not complete. The Alexiewicz norm is named after the Polish mathematician Andrzej Alexiewicz, who introduced it in 1948. ==Definition==
Let HK(R) denote the space of all functions ''f'': R → R that have finite Henstock–Kurzweil integral. Define the Alexiewicz semi-norm of ''f'' ∈ HK(R) by : This defines a semi-norm on HK(R); if functions that are equal Lebesgue-almost everywhere are identified, then this procedure defines a ''bona fide'' norm on the quotient of HK(R) by the equivalence relation of equality almost everywhere. (Note that the only constant function ''f'': R → R that is integrable is the one with constant value zero.)
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Alexiewicz norm」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|